Скачать 184.46 Kb.
|
Многокритериальные МЕТОДЫ ОБОСНОВАНИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ НЕСТОХАСТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТИ ДАННЫХ Ахрамейко А.А. Белорусско-Российский университет e-mail: jion@tut.by Железко Б.А., к.т.н., доцент Белорусский государственный экономический университет e-mail: Zhelezko_B@bseu.by 1. ВВЕДЕНИЕ Экономические преобразования, происходящие в настоящее время в Республике Беларусь и других постсоветских странах, характеризуются неустойчивой динамикой микроэкономических условий функционирования субъектов хозяйствования. При этом информация о данных условиях и отчетных показателях финансово-хозяйственной деятельности организаций подвержена резким конъюнктурным колебаниям и имеет слабую сопоставимость во времени. Например, использование сопоставимых цен позволяет учитывать влияние инфляционных процессов и изменения структуры цен, но не изменения условий функционирования организации. Традиционные методы и модели обоснования (поддержки принятия) управленческих решений, успешно применяемые в рыночных экономиках, в переходной экономике теряют свою эффективность: математические методы и модели, основанные на детерминистических подходах, дают недостаточно точные результаты, а методы математической статистики не применимы для анализа качественных экспертных данных (например, когда при анализе финансового состояния фактические данные берутся из финансовой отчетности, а остальная необходимая информация получена от экспертов). Перечисленные особенности экономических процессов переходного периода обусловили необходимость исследования процесса принятия управленческих решений в организациях, функционирующих в условиях нестохастической неопределенности данных. Мировая практика показывает, что наиболее эффективными методами для решения задач такого класса являются методы комбинированного интеллекта, сочетающего в себе достоинства интеллекта естественного и искусственного (в частности, методы теории нечетких множеств). Отдельные направления рассматриваемой проблемы изучаются несколькими научными школами в Республике Беларусь, в частности, научной школой Белорусского государственного университета (А.И. Змитрович, В.В. Краснопрошин), Белорусско-Российского университета (А.В. Венберг, В.А. Широченко), Гродненского государственного университета (А.Э. Алехина, П.В. Севастьянов) и Белорусского государственного экономического университета (Е.И. Велесько, Б.А. Железко, А.Н. Морозевич). Решить такие проблемы пытаются и зарубежные ученые и практики. Построением экспертных систем финансового анализа занимаются М. Думпос, К. Зопоунидис и др.; экспертных систем анализа причин успешного или неуспешного развития предприятия — В. Шринивасан и др.; экспертных систем получения знаний в области финансов – Дж. Хартвигсен и др. В области применения многокритериальных методов поддержки принятия решений в финансовом менеджменте и экономике также работает ряд ученых по следующим направлениям: диагностика банкротства – Р. Словински, К. Зопоунидис, А.И. Димитрас, М. Думпос, Б. Матараццо и др.; оценка кредитного риска – К. Зопоунидис, П.М. Пардалос, М. Думпос и др.; оценка и классификация ценных бумаг, оценка странового риска – М. Думпос, К. Зопоунидис и др.; рейтинги облигаций, управление персоналом – В. Шринивасан и др.; формирование портфеля и управление им – К. Зопоунидис, М. Думпос, С.Х. Занакис, П.М. Пардалос и др. [1-2] В этих же направлениях работали Э. Альтман, Р. Эйзенбейз, Б. Марешаль, Й. Сискос и др. Получен ряд интересных результатов, однако не решены вопросы принятия управленческих решений в условиях нестохастической неопределенности исходных данных и построения адекватных показателей, комплексно характеризующих состояние изучаемых объектов при отсутствии полной информации о них. Целью данного исследования является разработка многокритериального инструментального метода обоснования управленческих решений в условиях нестохастической неопределенности данных. 2. ПРОБЛЕМЫ ПОДДЕРЖКИ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ НЕСТОХАСТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТИ ДАННЫХ Под нестохастической неопределенностью данных понимается неопределенность, которая не носит вероятностного характера [3-4]. В настоящее время многие отечественные предприятия находятся в кризисном или близком к кризисному состоянии. Как показывают исследования, это связано не только с общим плохим состоянием отдельных отраслей, а с неверным обоснованием и принятием решений по управлению предприятиями в условиях высокой динамики внешней среды. Поэтому проблема разработки методов поддержки принятия решений является весьма актуальной для экономики Республики Беларусь. Анализ преимуществ и недостатков метода анализа иерархий и его основных модификаций позволил выявить перспективные направления его развития, которое приведет к существенному расширению его сферы применимости. На основании анализа методов построения единого мнения экспертной группы обоснована необходимость совершенствования метода медианы Кемени с целью обеспечения возможности его применения для обобщения нечетких экспертных ранжировок. В результате исследования основных способов нормирования экономических показателей установлена необходимость обобщения процедуры нормирования применительно к рассматриваемой проблематике. На основании проведенного анализа сильных и слабых сторон моделей классических многокритериальных методов поддержки принятия решений в области анализа финансового состояния организации сформулирован ряд проблем и вытекающих из них базовых требований к методам поддержки принятия решений для ситуации нестохастической неопределенности данных (максимальная независимость от внешних источников информации, например, возможность принятия решения без исследования большой выборки финансовых отчетов организаций; представление совокупности комплексных и частных показателей определенных сфер деятельности организации в виде иерархического дерева критериев; сохранение всех полезных промежуточных нечетких данных, характеризующих различные аспекты состояния анализируемого объекта, с целью их использования на конечной стадии обоснования решений; интерпретация значения показателя в соответствии с построенной лингвистической шкалой на основе базы знаний; использование линейного и нелинейного нормирования для сопоставления разнородных показателей и учета разного вклада в итоговый показатель изменения частных показателей на различных промежутках их областей определения; использование современных методов обработки результатов экспертных опросов, а также методов формирования единого мнения группы экспертов с учетом их квалификации при определении важности показателей и оценке качественных и некоторых количественных показателей (значения которых нельзя получить из статистической или бухгалтерской отчетности); использование методов, позволяющих обрабатывать количественные и качественные данные, не обладающие статистической однородностью, и анализировать процессы, не имеющие постоянных статистических параметров). 3. КОМПЛЕКСНЫЙ ИНСТРУМЕНТАЛЬНЫЙ МЕТОД ПОДДЕРЖКИ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ НЕСТОХАСТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТ ДАННЫХ Для преодоления указанных проблем предложено экспертным способом составлять нечеткую прогнозную финансовую отчетность исследуемого субъекта хозяйствования и по ней рассчитывать показатель DAINA [5]. Комплексный инструментальный метод поддержки принятия управленческих решений (КИМ ППР) включает ряд описанных ниже процедур, методов и моделей, позволяющих обрабатывать качественные и количественные (в том числе нечеткие) исходные данные. Показатель DAINA в общем случае рассчитывается по формуле DAINA ![]() где ψ – некоторая аналитическая функция свертки; {K} – множество весов групп показателей; {X} – множество весов показателей; {A} – множество нормированных значений показателей. Для решения практических задач удобно использовать линейную функцию свертки. Тогда показатель DAINA рассчитывается по формуле: ![]() DAINA , (2) где m – количество групп показателей; j – номера групп показателей; kj – вес j-й группы показателей; nj – количество показателей в j-й группе; i – номера показателей; xij – вес i-го показателя j-й группы; aij – нормированное значение i-го показателя j-й группы. На основании проведенных исследований предложены оригинальные экономико-математические методы, позволяющие осуществлять поддержку принятия управленческих решений в условиях нестохастической неопределенности данных. Основными из них являются описанные ниже. Нечеткий метод анализа иерархий (fuzzyAHP) и нечеткий метод анализа иерархий с дефаззификацией (fuzzyAHP+), основанные на формализации размытых экспертных суждений нечеткими трапециевидными числами с учетом психофизических особенностей эксперта и влияния закона Вебера и отличающиеся использованием лингвистических шкал оценки значимости альтернатив. Метод fuzzyAHP+ отличается от метода fuzzyAHP тем, что в результате расчетов лицо, принимающее решение, получает четкий вектор приоритетов, а при использовании fuzzyAHP — нечеткий [6-7]. Методы нечеткой медианы Кемени (fuzzyKM) и нечеткой медианы Кемени с дефаззификацией (fuzzyKM+), отличающиеся возможностью использования нечетких экспертных ранжировок и получения в качестве единого мнения экспертной группы соответственно четкого или нечеткого вектора приоритетов [8]. Полученные результаты позволяют расширить сферу применимости традиционных методов на условия нестохастической неопределенности и повысить эффективность извлечения знаний из экспертов, так как предполагают использование экспертных знаний, выраженных высказываниями на естественном языке, в то время как наиболее близкие методы (например, предложенный Дж. Бакли) предполагают оценивание экспертом превосходства одной альтернативы над другой нечетким числом или оперируют четкими числами. Введено понятие квази-модального значения (akm) нечеткого числа A(a1; a2; a3; a4), которое определяется как абсцисса точки пересечения L и R компонент его функции принадлежности μ(a) (рис. 1). ![]() ![]() Рис. 1 Квази-модальное значение нечеткого трапециевидного числа Предложен метод нормирования нечетких величин, который представляет собой построение их отображения на интервал [0; 1]. Данная операция вводится как нормирование каждого компонента нечеткого числа по аналогии с нормированием четких величин. Вводится понятие типичного значения показателя, являющегося нечетким трапециевидным числом и состоящего из четырех компонентов: первый и четвертый характеризуют интервал возможных значений показателя (a1; a4), а второй и третий – интервал оптимальных значений показателя (a2; a3). Предложенный способ нормирования нечетких чисел позволяет сопоставлять разноразмерные количественные и, что очень важно, качественные показатели, выраженные нечеткими числами или в вербальных оценках, что дает возможность строить различного рода комплексные показатели, основываясь на размытых исходных данных. Разработан метод построения базы знаний и распознавания состояния организации. Он основан на введении лингвистических переменных «Состояние организации» и «Степень оценочной уверенности» и построении их терм-множеств. По результатам их исследования строится база знаний, состоящая из продукционных правил, которые позволяют определить принадлежность значения показателя DAINA тому или иному терму переменной «Состояние организации» и степень оценочной уверенности в принятом решении. Предложена модель прогнозирования кризисных процессов в организации, которая дает возможность использовать предложенные методы и модели не только для классификации исследуемых объектов, но и для прогнозирования их состояния. Разработана модель обоснования управленческих решений на основе сравнения нечетких чисел, учитывающая не только математические критерии, но и те, которые обусловлены экономическим смыслом сравниваемых величин:
4. РЕАЛИЗАЦИЯ КОМПЛЕКСНОГО ИНСТРУМЕНТАЛЬНОГО МЕТОДА ОБОСНОВАНИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В ходе практической реализации предложенного КИМ ППР разработана концепция управления требованиями к системама поддержки принятия решений (СППР), являющаяся развитием концепции ПИР-требований А.Н. Морозевича. Предложенная концепция отличается маркетинговой направленностью и новой целевой группой специалистов (продавцы: маркетологи, специалисты по послепродажному обслуживанию, непосредственно продавцы и т.д.), опосредующей взаимоотношения производителя и потребителя. Данная концепция позволяет осуществить двустороннюю связь между конечным потребителем системы и ее производителем: во-первых, с технической точки зрения через проектировщиков (функциональные возможности системы), а во-вторых — с экономической — через продавцов, и тем самым повысить эффективность разработки. На основе экспертных опросов специалистов в области экономики и программного обеспечения сформирован комплекс требований к СППР четырех целевых групп специалистов — проектировщиков, производителей, продавцов и потребителей. При этом установлено, что удельный вес требований потребителя в общей их сумме составляет 78,8 % (в том числе 48,3 % — функциональные требования), а продавца — 14,1 % [9]. С учетом выявленных требований разработан прототип СППР «Дайна» для распознавания состояния организации и формирования его лингвистической оценки (рис. 2). ![]() Рис. 2. Окно с результатами работы прототипа СППР «Дайна» Применение данного прототипа позволяет упростить процедуру поддержки принятия решений. С помощью прототипа СППР «Дайна» проводились построение банковских и страховых рейтингов, анализ финансового состояния организаций и оценка эффективности реинжиниринга, мониторинг качества сварочного производства. Это указывает на достаточную универсальность прототипа СППР «Дайна» в рамках задач по обоснованию управленческих решений. Предложен показатель качества СППР (QDSS). Он позволяет осуществлять количественную оценку и обоснованный выбор системы в зависимости от особенностей решаемых задач, а также учитывать не только факт выполнения требований, предъявленных потребителями, продавцами, производителями и проектировщиками, но и их значимость для полноценной работы системы: ![]() где u – номера целевых групп специалистов, имеющих отношение к разработке и эксплуатации СППР; ru – коэффициенты значимости целевых групп; nu – количество требований в u-й группе; i – номера требований; ![]() Установлено, что значение показателя QDSS для прототипа СППР «Дайна» составляет 85 %. 5. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ КОМПЛЕКСНОГО ИНСТРУМЕНТАЛЬНОГО МЕТОДА ОБОСНОВАНИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В данном разделе представлены результаты решения ряда практических задач с помощью разработанного метода. В частности, на основании 23 показателей качества управления капиталом и деловой активности, платежеспособности (ликвидности), рентабельности и финансовой устойчивости и гибкости проведен анализ финансового состояния предприятия «Динамо Програм Пинск» на первом этапе реинжиниринга бизнес-процессов. Основные его результаты представлены в табл. 1. Результаты расчетов свидетельствуют о том, что на протяжении проанализированных 10 периодов (в течение времени t) состояние предприятия постоянно ухудшалось. Если в начале оно было нормальным, то в конце оно на 70 % оценивается как плохое, а на 30 % – как очень плохое. Таблица 1. Динамика значений показателя DAINA и лингвистическая оценка финансового состояния предприятия (линейное нормирование)
На основании результатов расчетов была оценена эффективность принятых решений по управлению совместным белорусско-итальянским предприятием «Динамо Програм Пинск». Анализ динамики показателя эффективности управленческих решений показал необходимость проведения реинжиниринга бизнес-процессов. Результатами реинжиниринга явились уменьшение финансовых затрат на осуществление этого бизнес-процесса на 27% и сокращение общей продолжительности бизнес-процесса «Выполнить заказ» на 8 %. Благодаря использованию КИМ ППР на данном предприятии эффективность принимаемых руководителями решений повысилась, кризис был преодолен, предприятие стало успешно развиваться. Для оценки адекватности предложенных методов и моделей и достоверности результатов проведенных исследований были сопоставлены результаты, полученные с использованием КИМ ППР (показатель R) и модели Г.В. Савицкой, а также модели Г.В. Давыдовой и А.Ю. Беликова (показатель Z), основанных на дискриминантном анализе. Коэффициент корреляции между значениями показателя DAINA (линейное нормирование) и моделью Г.В. Савицкой составляет 0,85, что позволяет сделать вывод об адекватности построенной модели и достоверности полученных в ходе расчетов результатов (рис. 3). ![]() Рис. 3. Динамика показателя Z и репрезентативных чисел R показателя DAINA при синусоидальном и линейном нормировании По состоянию на 1 января 2002 г. построены банковский и страховой рейтинги (табл. 2.) [10-11]. При построении рейтингов выделены также рейтинговые классы, характеризующие финансовое состояние исследуемых организаций (ААА — наиболее благоприятное финансовое состояние, АА — благоприятное и т.д. по убыванию, по аналогии со шкалами, которые используются международными рейтинговыми агентствами). Рейтинги могут использоваться для обоснования решений как по управлению банками и страховыми организациями (на основе анализа изменения места организации в рейтинге в результате возможной реализации того или иного решения), так и другими предприятиями с учетом их конкретно-экономической ситуации, стратегических планов и системы предпочтений (например, о заключении страховых договоров с наиболее надежной организацией, о выборе банка-посредника при проведении финансовых операций и т.д.). На основании описанной выше методики с использованием материалов рейтингового агентства Белорусского государственного университета с 01.01.2004 г. по 01.10.2006 г. построен вербальный рейтинг белорусских банков и изучена его миграция [12]. Для определения вероятности перехода банка из одного рейтингового класса в другой надо количество таких переходов разделить на общее количество переходов из данного рейтингового класса. Бóльшая часть белорусских банков концентрируется в «среднем» (от B– до BBB+) классе. Таблица 2. Рейтинг по группе крупных страховых компаний
На основании вербального рейтинга впервые в отечественной практике проведено изучение миграции банковских рейтингов. Результаты исследования указывают на стабильность банковской системы, поскольку банки устойчиво концентрируются в «среднем» классе и не стремятся менять его. Однако нельзя говорить, что такое положение вещей является удовлетворительным, поскольку отсутствует тенденция улучшения рейтингов банков, впрочем, как нет и банков, имеющих высокие рейтинговые классы. Полученные результаты позволяют более эффективно использовать банковские рейтинги, существенно дополняя их информацией для принятия грамотных управленческих решений. 6. ЗАКЛЮЧЕНИЕ В результате проведенного комплекса исследований разработан новый инструментальный метод поддержки принятия (обоснования) управленческих решений в условиях нестохастической неопределенности данных, включающий следующие математические методы, учитывающие экономическую сущность обрабатываемой информации: новые методы расчета квази-модального значения нечеткого числа, нормирования и сравнения нечетких чисел, авторские модификации методов анализа иерархий Саати и медианы Кемени с использованием нечетких чисел. Предложены новые методы принятия управленческих решений для конкретных предметных областей (банковской сферы, страхования, сварочного производства), а также универсальный метод оценки финансового состояния организации. Разработана СППР, которая включает в себя комплекс алгоритмов выбора оптимального решения на основе базы знаний о возможных последствиях решений для организации. Литература
|
![]() | Цель: Приобрести навыки поиска рациональных решений в условиях неопределенности вызванной конфликтом интересов | ![]() | Основной задачей дисциплины «Анализ и синтез управленческих решений в инновационной экономике» является изучение современных методов... |
![]() | Цели дисциплины: формировании у студентов экономического мышления как важнейшей составляющей общей профессиональной подготовки, а... | ![]() | Автоматизация управления – применение технических средств в помощь человеку при управлении техническими объектами, технологическими... |
![]() | Будущий менеджер должен научиться правильно применять готовые компьютерные программы, хорошо разработанную технику анализа количественных... | ![]() | Цель: дать необходимый объем знаний об основных экономических теориях, концепциях, принципах экономического поведения и функционирования... |
![]() | «Бухгалтерская (финансовая) отчетность» формирование у будущих бакалавров системы знаний о содержании бухгалтерской (финансовой)... | ![]() | Целью изучения курса является ознакомление слушателей с основными принципами и методами оценивания риска, принятия решений при неопределенности,... |
![]() | Методы принятия управленческих решений | ![]() | Факторы, обусловливающие необходимость учета фактора неопределенности многообразны |