Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий()






Скачать 120.4 Kb.
НазваниеПрограмма дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий()
Дата публикации19.07.2015
Размер120.4 Kb.
ТипПрограмма дисциплины
e.120-bal.ru > Экономика > Программа дисциплины
Министерство экономического развития и торговли

Российской Федерации

Государственный Университет –

Высшая школа экономики


Факультет экономики



Программа дисциплины
ТЕОРИЯ риска

для направления 080100.68 «экономика» подготовки магистра

Автор: А.Г.Шоломицкий(asholomitsky@hse.ru)
Рекомендована секцией УМС

« Конкретная экономика»

Председатель

Смирнов С.Н.

________________

«______» _______________________ 2008 г.

Утверждена УС факультета

Экономики

Ученый секретарь

Протасевич Т.А.

_________________

«______» ______________________ 2008 г


Одобрена на заседании

кафедры управления рисками и страхования
Зав. кафедрой Смирнов С.Н.

_________________________

«_______» ________________2008 г.




Москва, 2008


  1. Пояснительная записка.



Автор программы – к.ф.-м.н. А.Г.Шоломицкий.
Аннотация.

Курс «Теория риска» рассчитан на один семестр и читается студентам первого курса магистратуры направления Экономика, обучающимся по магистерской программе «Математические методы анализа».
Курс предназначен для ознакомления слушателей с теорией экономического поведения и принятия решений при неопределенности и в ситуациях, связанных с присутствием риска, а также с основными теоретическими принципами оценки риска.
Полученные знания могут быть использованы в курсах экономического профиля и при подготовке магистерских диссертаций, связанных с проблемами учета риска при оптимизации экономических решений.
Для успешного усвоения курса студентам необходимо не просто получить представление об основных методах анализа, но и научиться применять эти методы. Это требует непрерывной практики в решении задач. Одной из форм контроля является домашнее задание, которое включает в себя примеры задач использования различных методов и моделей оценки риска.
Требования к студентам.



Предполагается, что студенты знакомы с необходимым математическим аппаратом (математический анализ, теория вероятностей, теория случайных процессов).
Учебная задача дисциплины.
В результате изучения курса «Методы и модели оценки риска» студент должен:

  • знать основные результаты современной теории принятия решений в условиях риска и неопределенности;

  • обладать навыками использования различных методов и моделей оценки риска;

  • уметь применять полученные знания при решении теоретических и практических задач.



2.Тематический план дисциплины.





Наименование разделов и тем

Всего

Часов

Аудиторные часы

Самостоятельная работа

Лекции


Семинары

1

Задачи выбора в экономике

10

4



-


6

2

Проблемы изменения риска

16

6


-


10

3

Ожидаемая полезность и её применения к задачам выбора в условиях риска


18

8

-

10

4

Парадоксы и нелинейные модели выбора в условиях риска


22

6

-

16

5

Выбор в условиях неопределённости


15

6

-

9



Итого:

81

30

-

51


3.Литература.


Базовый учебник.

  1. Шоломицкий А.Г. (2005) Выбор при неопределенности и моделирование риска. – М.: ИД ГУ ВШЭ (готовится к выходу) [Ш]


Основная.

  1. Starmer, C. (2000) Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk. – J. of Economic Literature, XXXVIII, 332 – 382. [Starmer]

  2. Бауэрс, Н. Л., и др. (Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J.) (1997; рус. пер. 2001) Актуарная математика (2-е изд.). – М.: Янус-К. [Бауэрс]

  3. Fishburn, P. C. (1988) Nonlinear preference and utility theory. – Johns Hopkins Univ. Press. [Fishburn]

  4. Jorion, P. (1997) Value at risk. McGraw-Hill. [Jorion]


Дополнительная.

  1. M.Machina Choice under uncertainty: problems solved and unsolved. - Economic perspectives, 1987, 1, 121 -154. [Machina]

  2. Tversky, A., and Kahneman, D. (1992) Advances in prospect theory: cumulative representation of uncertainty. – J. of Risk and Uncertainty, 5, 297 – 323. [Tversky]

  3. Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999) Coherent measures of risk. – Mathematical Finance, 9, 3, 203 – 228. [Artzner]

  4. McNeil, A. J. (1997) Estimating the tails of loss severity distributions using extreme value theory. – ASTIN Bulletin, 27, 1, 117 – 137. [McNeil]

  5. Embrechts, P., Kluppelberg, C., and Mikosh, T. (1997) Modelling extremal events for finance and insurance. – Springer. [Embrechts]

  6. Loewenstein, G., and Prelec, D. (1992) Anomalies in intertemporal choice: evidence and interpretation. – Quarterly J. of Economics, 107, 2, 573 – 597.

  7. Phelan, M. (1995) Probability and statistics applied to the practice of financial risk management: the case of JP Morgan’s RiskMetrics. – Working Paper 95-19, Wharton Business School, Univ. of Pennsylvania. [Phelan]

  8. Смоляк, С. А. (2002) Оценка эффективности инвестиционных проектов в условиях риска и неопределенности (теория ожидаемого эффекта). – М.: Наука. [Смоляк]

  9. Фишберн, П. (Fishburn, P.) (1970; рус. пер. 1978) Теория полезности для принятия решений. – М.: Наука. [Фишберн]

  10. Mas-Colell, A., Whinston, M. D., Green, J. R. (1995) Microeconomic theory. – Oxford Univ. Press. [Mas-Colell]

  11. Вилкас, Э. Й. (1990) Оптимальность в играх и решениях. – М.: Наука.

  12. Anscomb, F. J., Aumann, R. J. (1963) A definition of subjective probability. – Annals of Mathematical Statistics, 34, 1, 199 – 205. [Anscomb and Aumann]

  13. Ingersoll, J. E. (1987) Theory of financial decision making. – Rowman and Littlefield. [Ingersoll]

  14. Kahneman, D., and Tversky, A. (eds.) (2000) Choices, values, and frames. – Cambridge Univ. Press.

Соответствующие разделы основной литературы приведены по каждой теме.
4.Формы контроля.


    1. Текущий контроль – посещение лекций и активность студентов на занятии.

    2. Промежуточный контроль – домашнее задание (30% от общей оценки)

    3. Итоговый контроль – письменный зачёт в конце курса (60% от общей оценки)

Итоговый контроль – зачёт. Письменная работа в конце семестра, которая включает в себя ответы на теоретические вопросы и решение задач.

Итоговая оценка складывается из результатов текущего контроля (Отек),

промежуточного контроля (Опр) и оценки по 10-бальной шкале, полученной на зачёте (Ок).

Итоговая оценка (Оср) определяется как средневзвешенная величина из оценок текущего контроля (Отек), промежуточного контроля (Опр) и контрольного теста (итоговый зачёт) (Ок)

Удельный вес каждой формы контроля составляет:

Текущий контроль = 0,1

Промежуточный контроль = 0,3

Контрольный тест (итоговый зачёт) = 0,6

Оср=0,1*Отек +0,3*Опр+0,6*Ок

5.Содержание программы.
Раздел I. Задачи выбора в экономике (Ш, гл. 1).

Обзор экономических задач выбора: выбор из чисел, векторов, последовательностей платежей, выбор в условиях риска и в условиях неопределенности. Общая постановка задачи выбора. Предпочтения. Аксиоматический подход к задачам выбора. Практические подходы к задачам выбора.
Раздел II. Проблемы измерения риска.

Стохастическое доминирование первого и второго рода. Принцип «среднее – дисперсия» и портфельная теория Марковица. Диверсификация. (Ш, гл. 1, 2).

VaR. Теоретические свойства и основные практически- ориентированные модификации подхода. Пример: методика RiskMetrics. Меры риска, развивающие подход VaR. Когерентность. (Ш, 2.3; Jorion; Hull, Ch. 6; Phelan; Artzner et al.).

Оценка экстремальных рисков и теория экстремальных значений (EVT) (Ш, 2.5; Embrechts and Kluppelberg; McNeil).
Раздел III. Ожидаемая полезность и ее применения к задачам выбора в условиях риска. (Ш, гл. 3; Mas-Colell; Фишберн; Бауэрс, гл. 1; Ingersoll).

Теория Бернулли. Аксиоматическое построение Неймана – Моргенштерна. Аксиома независимости. Приложения ожидаемой полезности: модель выбора страховой премии, теорема Эрроу об оптимальном страховании, выбор портфеля в статическом и динамическом случаях.
Раздел IV. Парадоксы и нелинейные модели выбора в условиях риска. (Ш, гл. 4, 5; Fishburn, Ch. 2, 3; Starmer).

Критика теории ожидаемой полезности. «Парадоксы» теории и рациональное поведение при неопределенности. Развитие теории. Нелинейные модели и их аксиоматизация.
Раздел V. Выбор в условиях неопределенности (Ш, гл. 6; Fishburn, Ch. 7, 8; Starmer; Смоляк; Tversky).
Модель выбора в условиях неопределенности. Субъективные вероятности: теории Энскомба и Ауманна, Сэвиджа. Парадоксы Эллсберга. Теория проспектов Канемана и Тверски.


6.Вопросы для оценки качества освоения дисциплины.
Примеры вопросов (задач) для проверки качества знаний:

1. Сравните распределения по критериям стохастического доминирования первого и второго порядка. Вычислите и сопоставьте математические ожидания и дисперсии распределений.

и

.

2. Рассмотрим следующее правило сравнения альтернатив: если то . Величины и считаются независимыми. Монотонно ли это правило относительно первого стохастического доминирования?

3. Покажите, что отношение стохастического доминирования второго порядка транзитивно.

4. Покажите, что множество эффективных портфелей на плоскости изображается выпуклым множеством точек.

5. Покажите, что критерий математического ожидания, , удовлетворяет свойству монотонности относительно первого стохастического доминирования.

6. Докажите, что если доминирует в смысле второго стохастического доминирования и , то . Верно ли обратное? Если да, докажите. Если нет, приведите пример.

7. Пусть и – две нормальные функции распределения. Покажите, что в том и только том случае, когда .

8. Инвестор формирует свой портфель из двух активов: доллара и евро так, чтобы минимизировать DEaR. Предположим, что для периода в один день , , . Найти – оптимальную долю вложений в доллар.

9. Какие из следующих мер риска удовлетворяют условию однородности? Условию монотонности относительно первого стохастического доминирования?

(а) Математическое ожидание ;

(б) мера риска ;

(в) мера риска Полячека – Тверского ;

(г) VaR (квантиль распределения);

(д) мера риска ;

(е) мера риска ;

(ж) условное ожидание хвоста .

10. Докажите следующие утверждения.

(a) Мера риска является когерентной мерой риска, если распределения всех убытков и их сумм нормальны.

(b) Мера риска не является когерентной мерой риска, если распределения убытков могут быть произвольными.

(c) VaR, определенная как квантиль соответствующего распределения, не является когерентной мерой риска, если распределения убытков могут быть произвольными.

11. Нами рассматривались меры риска, для которых неприятие риска выражалось убыванием по дисперсии. В теории ожидаемой полезности неприятие риска выражается вогнутостью функции полезности денег. Покажите, что эти два принципа противоречивы.

Указание. Постройте пример случайных величин и и вогнутой функции таких, что , но . Почему нельзя привести такого примера с нормально распределенными и ?

12. Какие из приведенных ниже функций полезности монотонны относительно первого и/или второго стохастического доминирования, а какие – нет? Почему?

(а) ;

(b) ;

(c) ;

(d) ;

(e) ,

где E – математическое ожидание, D – дисперсия.

13. Один и тот же человек регулярно покупает лотерейные билеты, надеясь выиграть автомобиль ценой $10 000, и страхует свой собственный автомобиль такой же стоимости от угона. Можно ли объяснить его поведение с помощью модели ожидаемой полезности? Какую форму должна иметь функция полезности? (Friedman and Savage, 1948).

14. Ущерб по некоторому риску распределен равномерно от 0 до 20. Какую максимальную страховую премию за страхование такого риска готов будет заплатить страхователь, имеющий капитал 50 и руководствующийся правилом максимизации ожидаемой полезности с функцией полезности , ?

15. Предположим, что ущерб страхователя имеет следующее распределение: в случае аварии (с вероятностью 0,02) ущерб распределен равномерно на ; в противном случае ущерб равен 0. Найти максимальную страховую премию, которую готов заплатить страхователь в этом случае.

16. Страховой ущерб в случае пожара распределен равномерно от 0 до 100; вероятность пожара равна 0,02. Найти форму страхового контракта, оптимальную с точки зрения страхователя, имеющего возрастающую и вогнутую функцию полезности, максимизирующего свою ожидаемую полезность и готового заплатить за страхование данного риска сумму .

17. Инвестор имеет возможность сформировать портфель из двух активов, годовые нормы доходности которых моделируются нормальными случайными величинами со средними и и средними квадратическими отклонениями и , соответственно, и коррелированы с коэффициентом корреляции . Считая, что инвестор вкладывает 1 ден. ед., имеет функцию полезности и стремится максимизировать ожидаемую полезность стоимости капитала на конец года, найти оптимальные с его точки зрения доли вложений в первый и второй активы.

18. Проверьте, что если предпочтения определяются критерием «субъективно взвешенной ожидаемой полезности», то выполнена основная аксиома Сэвиджа (sure thing principle).

19. Пусть лицу, осуществляющему выбор, известны физические вероятности событий и выбор определяется только распределением результата, т.е. имеет место выбор в условиях риска. Покажите, что в этом случае аксиома sure thing principle Сэвиджа сильнее аксиомы независимости фон Неймана – Моргенштерна.

Указание. Воспользуйтесь представлением альтернатив выбора в виде двухступенчатых лотерей.

20. Покажите, что первый из парадоксов Эллсберга представляет нарушение аксиомы (G4) Сэвиджа.

21. В экперименте испытуемым было сначала предложено выбрать между правом сыграть в игру

(A) выиграть $1000 с вероятностью 2/3 (0 в противном случае – везде далее опускается)

и альтернативой

(B) получить $500 без риска.

Опрошенные в среднем признали альтернативы равнозначными. Затем было предложено выбрать одну из альтернатив:

(C) выиграть $1000 с вероятностью 0,4 и $500 с вероятностью

и

(D) выиграть $500 с вероятностью 0,8.

Каким должно быть , чтобы выбор во второй паре альтернатив соответствовал теории ожидаемой полезности?

22. В некотором экперименте испытуемым было сначала предложено выбрать между правом сыграть в игру

(A) выиграть $200 с вероятностью 0,6

и альтернативой

(B) получить $100 без риска.

Большинство опрошенных выбрали (B). Затем было предложено выбрать одну из альтернатив:

(C) выиграть $200 с вероятностью 0,3 и $100 с веростностью 0,4

и

(D) выиграть $100 с вероятностью 0,8.

Какой выбор во второй паре альтернатив согласуется с теорией ожидаемой полезности?

23. Рассмотрим следующий пример (Аллэ, 1953). Предлагается выбор между : получить 1 млн. франков без риска; и : 5 млн. франков с вероятностью 0,8, 0 с вероятностью 0,2. Затем предлагается выбор между : 1 млн. франков с вероятностью 0,05 и 0 с вероятностью 0,95; и : 5 млн. франков с вероятностью 0,04 и 0 с вероятность 0,96. Большинство людей предпочитают в первой паре и во второй. Покажите, что такие предпочтения нельзя описать моделью ожидаемой полезности.


    1. Методические рекомендации преподавателю.

При построении лекций необходимо, во возможности, демонстрировать связь теории принятия решений с различными феноменами, наблюдаемыми в реальных экономических ситуациях. Не следует вкладывать в сознание студентов определенные стереотипы, «канонизируя» какой-либо «рецепт» оценки риска, например, ожидаемую полезность или VaR. Следует развивать у студентов критическое мышление, внимание к условиям и границам применения тех или иных моделей.
Для освоения данного курса важно научить студентов понимать различные свойства мер риска и критериев выбора. При этом важную роль играет решение соответствующих задач.
8. Методические указания студентам.
Для успешного усвоения курса необходимо не только посещать лекции и семинарские занятия, но и активно готовится к ним. Решение домашних заданий очень важно для усвоения курса.


9. Рекомендации по использованию информационных технологий.

Различные материалы по этому курсу будут вывешиваться на личных страницах преподавателей на сайте ГУ – ВШЭ, а также на сайте www.xion.ru.


Автор программы:_________________________________ Шоломицкий А.Г.

Добавить документ в свой блог или на сайт

Похожие:

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма Экономика риска и неопределенности для направления 080100. 68 «Экономика»
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления [ 080100. 68 «Экономика»...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины «Теория общественного выбора» для направления...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и магистрантов направления подготовки...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины «Теория общественного выбора» для направления...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и магистрантов направления подготовки...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины Теория и методы социоэкономики  для направления...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки/специальности...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины Физическая культура для направления 080100....
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки/ для...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины Бизнес-планирование инноваций  для направления/...
Программа предназначена для преподавателей, ведущих данную дисциплину, и студентов направления подготовки 080100. 68 Экономика, обучающихся...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины [Введите название дисциплины] для направления/...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки/ специальности...

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины [Введите название дисциплины] для направления/...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов 4 курса направления 080100....

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины [Введите название дисциплины] для направления/...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов 4 курса направления 080100....

Программа дисциплины теория риска для направления 080100. 68 «экономика» подготовки магистра Автор: А. Г. Шоломицкий() iconПрограмма дисциплины “Управление активами и пассивами банка” для...
Управление активами и пассивами банка” для направления 080100. 68 -экономика подготовки магистра






При копировании материала укажите ссылку © 2016
контакты
e.120-bal.ru
..На главную